
Software Development Based on Software Pattern Evolution �

Takashi Kobayashi Motoshi Saeki

Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan

Tel: +81-3-5734-2192 / Fax:+81-3-5734-2917
E-mail: �tkobaya,saeki�@cs.titech.ac.jp

Abstract

This paper discusses a technique to model software
patterns for supporting pattern based software development.
Software development can be considered as the evolution
of the artifacts to be produced. Software patterns are
general structures that frequently appear in the artifacts
and the patterns are also being evolved as the artifacts are
being done. By specifying how to evolve software patterns
as software processes progress, we can get a support for
developing an artifact from the artifacts that were produced
in the previous steps. In our approach, we consider
that a software pattern consists of a pattern structure (a
class diagram and/or an object diagram) and manipulation
operations on the pattern structure. These operations are
for pattern instantiation (applying a pattern to an actual
problem) and for pattern evolution (evolving the artifacts
of the previous steps into a new one). We model them with
object-oriented technique encapsulating these operations
into patterns.

Keyword: Software Pattern, Software Evolution, Object-
Orientation

1. Introduction

Software development can be considered as producing
various kinds of documents (called artifacts). Developers
elicit requirements from their customers and/or users, and
compose a requirements specification document. Based
on the requirements specification, they do a design task to
produce a design specification. The activity of coding is
for transforming the design specification into a source code.
Thus the process of evolving customers’ requirements into
a final product (i.e. the source code) can be considered
as a software development process[5]. From this view-
point of artifact evolution, the essential point of software
�Published in the proceedings of the Sixth Asia Pacific Software Engi-

neering Conference - APSEC’99.

development is the structural change of the artifacts that are
being produced. Although the way of evolving the artifacts
greatly depends on the application domain and on the steps
of software development processes such as requirements
analysis step, we can have the styles of artifact evolution
that frequently appear and that are reusable to the other
development processes.

For example, although they are not patterns of artifact
evolution, Analysis Pattern[3] and Design Pattern[4], are
general and abstract structures that frequently appear in
past experiences in developing well-structured artifacts. A
developer uses Analysis Patterns to model his problem
domain from object-oriented view in requirements analysis
step. In his design step, he applies Design Patterns to
the model and gets its design specification. This example
suggests to us that there are some guidelines or ways how to
apply Design Patterns to an Analysis Pattern. Therefore we
can consider that artifacts can have common structures in
the development and that software patterns[1, 6, 8, 11] and
artifact evolution can be formalized as rules of structural
changes on the patterns.

In this paper, we consider software development pro-
cesses as the processes of changing and evolving the arti-
facts, and propose the modeling technique for these pro-
cesses by using evolution operations on the patterns. The
rest of the paper is organized as follows. In the next section,
we show the basic idea of pattern evolution in software
development by illustrating Analysis Pattern and Design
Pattern. Section 3 presents how to describe these evolution
operations on software patterns.

We use object-oriented model to specify the evolution
rules as operations to change the structure of the patterns.
Basic operations for manipulating patterns will be listed
in the section. As the artifacts to be developed are more
complicated, the patterns to be used are also larger and
more complicated. To model these patterns, we introduce
a hierarchical decomposition technique. In this technique,
a pattern comprise the combination of smaller patterns, and
we sketch it in section 4. Finally we discuss this technique

1

and list up the future work.

2. Pattern Evolution in Development Processes

2.1. Software Development using Patterns

In the case that we use software patterns such as Analysis
Patterns and Design Patterns to develop software systems,
we decide an appropriate pattern from a pattern catalog,
and instantiate and adapt it into a concrete artifact. After
this step, based on the artifact developed by using the
patterns, we produce a new artifact. We express the step
of instantiating and adapting the selected patterns as the
function ��� and the step of producing the new artifact as
the function �������. Figure 1 shows a development process
from the viewpoint of these functions. The usual process of
developing 	
���	
��� from 	
���	
��� (without using
patterns) can be represented as follows;

	
���	
��� � ��������	
���	
����

On the other hand, we can define the development process
of the 	
���	
��� using the patterns �	���
��� as;

	
���	
��� � �������	���
����

In the case of the product#2, we can get the similar ex-
pression, i.e. 	
���	
��� � �������	���
���� where
the function ����� is the step of instantiating and adapting
the �	���
��� to 	
���	
���. We assume that there are
some rules or guidelines for evolving and that they can be
formally defined as a function ����. We can specify the
relationships between the instantiation steps and between
the patterns by using ���� respectively as follows.

����� � �����������

�	���
��� � ������	���
����

We can also have the description of developing the
	
���	
���;

	
���	
��� � ������������������	���
�����

The above expression expresses a style of pattern based
software development. In this development process, a
developer selects a suitable pattern (�	���
���)and instan-
tiates it so that it is adaptable to his problem and so that he
gets an artifact (
���	
���). As the development process
progress, he can obtain a next artifact (semi-)automatically
by using evolution function ����. In this research, we
aim at the technique for supporting the development of the
artifacts in the next step, based on the patterns and their
instantiations used in the current step.

In waterfall lifecycle model of software development,
the artifacts are evolved from requirements analysis step to

Figure 1. Software Development Based on
Patterns

maintenance step through design, coding and test/debugging
steps. We can consider software patterns in each step and
Table 1 illustrates them. The patterns in a step are evolved
in the latter steps.

2.2. Example of Pattern Based Development

In this subsection, lets’ illustrate a simple example of
software patterns and its evolution. Figure 2 shows one of
the simplified versions of Analysis Patterns that are used in
requirement analysis step, and called Party-Accountability
Pattern. It is used for specifying an organizational struc-
ture and relationships (accountability relationships) among
persons in the organization, and has a flexible structure that
can handle with dynamic changes the organizations and
the relationships. For example, it is possible to add new
accountability relationships and delete the relationships in
the organization during the developed system are being
executed. In the figure, accountability type declares what
kind of relationships among the organizational units (e.g.
department and branch etc.) and persons (we call together
them parties) exist, while accountability specifies which
party types can participate in the accountability type.

For example, consider that we express the simple or-
ganizational structure shown in Figure 3 with the Party-
Accountability Pattern. In the figure, you can find two
accountability relationships �lecture to� and �supervise�.
To specify that they are the accountability relationships
between the party types �Professor� and �Student�, the cor-

Requirement Analysis Design Coding Test Maintenance

Requirements
Elicitation

Requirements
Specification

Architectural
Design

Detail Design

-Interview Pattern -Use Case Pattern -Architecture -Design Pattern -Application -Impact
-Questionnaire
Pattern

-Analysis Pattern Pattern Framework Propagation Pattern

Table 1. Examples of Patterns Used in Each Step

Figure 2. Party-Accountability Pattern (Simp-
lified Version)

responding instances of Accountability (expressed with ***
in the figure) have the links to �Professor� and �Student�.

Figure 3. Specification

As mentioned above, it is necessary to adapt the struc-
ture of the patterns and to add some information to them
according to the actual system to be developed, when we
practically apply the patterns. We call these operations
of adaptation and addition instantiation operations. What
parts we should and can instantiate in a pattern depends
on the pattern. These changeable parts are called hot
spots. The hot spots of the Party-Accountability Pattern
are �Accountability Type�, �Accountability� and �Party�,
and what kind of instantiation operations can be made on
each hot spot depend on the hot spot. In the example of
Figure 3, as shown in Figure 4, the instantiation operation
is composed from a sequence of three operations; 1) adding
as a subclass of Party an entity class that the organization
consists of (adding the classes �Professor� and �Student� to
the Party as its subclass), 2) creating accountability relation-
ship types as instances of Accountability Type (creating the

relationships �supervise� and �lecture to�), and 3) creating
the instances of Accountability corresponding to the gen-
erated Accountability Type instances, and linking them to
Parties (creating two Accountability instances correspond-
ing to �supervise� and �lecture to� and linking them to
�Student� and �Professor�).

Figure 4. Instantiation of Party-Accountability
Pattern

An allowable series of the instantiation operations de-
pends on patterns. Thus we should specify the instantiation
operations together with the structure of the patterns.

Lets’ suppose that we proceed the design task of this
example. To make use of this Party-Accountability Pattern
in the structure of a design specification, we evolve Ac-
countability Type and Accountability classes so that they
possesses the mechanism to create instances (e.g. creating
Accountability Type instances �supervise� and �lecture to�,
etc.).

The evolution rule of the analysis model to a design model
is that we add a class Creator that creates Accountability
Type instances and associate it with Accountability class.
This evolution process is depicted in Figure 5. In the pattern,
i.e. Figure 5 (a), the class Creator is an abstract class, and
its concrete class is made as its subclass when creating the
instances of Accountability during the instantiation process.
For example, by introducing Accountability Type instance
�supervise�, we add a concrete class �CreatorSupervise�
that is for generating the links between a Student instance

and a Professor one. The reason why we use an abstract
class is that we can write a single code of making links
between party instances independently of Accountability
Types. This is the same strategy of Factory Method design
pattern.

Figure 5. Evolution Example of Party-
Accountability Pattern

The way how to evolve an analysis model into a design
model depends on what instantiations have been done on
Party-Accountability Pattern in the analysis model, and the
pattern can have several evolution operations according to
design strategies. We can also have different evolution
operations if the pattern has different ways of instantiation.

3. Modeling Pattern Evolution

3.1. Modeling Patterns

In this section, we discuss how to model software patterns
with instantiation operations at first. We frequently specify
the structures of patterns with class diagram and/or object
diagram. Thus we can define the instantiation operations
as manipulation operations on class and object diagrams.
Since these instantiation operations are specific to patterns,
we can model a pattern with a pair of its structure and the
instantiation operations on it as follows;

Software Pattern
= Pattern Structure + Instantiation Operation

The detailed definitions of the instantiation operations can
be encapsulated into the definition of patterns. That is
to say, we can model a pattern as a class (say, pattern
class) from object-oriented viewpoint. In this modeling,

the structure of a pattern is specified as attributes (a set
of instance variables) and the instantiation operations are
considered as methods of a pattern class. See Figure 6.

3.2. Modeling Instantiation Operations

An instantiation operation, i.e. filling hot spots in
a pattern, consists of manipulations of a class or object
diagram. The examples of the basic manipulation on a
diagram are adding a subclass (addSubclass), adding a
method to a class, creating an object and so on. The list of
the basic manipulations will be listed up in the subsection
3.3. For example, with Java-like language, we can express a
part of the instantiation operations of Party-Accountability
Pattern shown in Figure 2 as follows;

Party-Accountability_AnalysisPattern{
Class Accountability_Type ;
Class Accountability ;
Class Party ;
...

Instantiate_Party(ConcreteParty-name) {
ConcreteParty =

CreateClass(ConcreteParty-name);
Party.addSubClass(ConcreteParty);

}

Instantiate_Accountability(Relationship,
Participant#1,
Participant#2) {

x = new Accountability_Type(Relationship) ;
y = new Accountability() ;
y.addAssociation(x) ;
y.addAssociation(Participant#1) ;
y.addAssociation(Participant#2) ;

}

where y.addAssociation(x) is a manipulation operation
for adding an association between x and y. To make the
accountability �supervise�, for an instance we create an
instance of Party-Accountability AnalysisPattern class and
send it a message Instantiate Accountability(’supervise’,
Professor, Student) . As mentioned in this subsection, the
instantiation functions ����� and ����� in Figure 1 can be
defined as a series of manipulations for modifying the class
or object diagram that expresses a pattern structure.

3.3. Manipulation on Patterns

The typical examples of basic manipulation operations
on class and object diagrams are listed up below. The
instantiation operations and evolution on patterns can be
defined.

� createClass(’Name’)
Creating a class whose name is ’Name’. (Constructor
of Class)

� ��	���.addSubclass(��	���)
Adding a class ��	��� as a subclass of ��	���.

� ��	���.addSuperclass(��	���)
Adding a class ��	��� as a superclass of ��	���.

� ��	���.addAssociation(��	���, ’Name’)
Adding an association ’Name’ between ��	��� and
��	���.

� ��	���.addAggregation(��	���)
Adding an aggregation ’Name’ between ��	��� and
��	���.

� createMethod(’definition’)
Creating a method whose code is ’definition’. (Con-
structor of Methods)

� ��	���.addMethod(������)
Adding a method ������ to ��	���

� ��	���.addAttribute(���
������)
Adding an attribute ���
������ to ��	���.

These basic operations can be considered as constructors
of class and object diagrams. Note that the effects of
executing the operations follow the usual semantics of
object-oriented model. For example, when we execute the
following sequence of operations;

superclass = createClass(’A’) ;
subclass = createClass(’B’) ;
superclass.addSubclass(subclass) ;
m1 = createMethod(’method1’ + MethodBody1) ;
m2 = createMethod(’method2’ + MethodBody2) ;
superclass.addMethod(m1) ;
superclass.addMethod(m2) ;
m1new =
createMethod(’method1’ + MethodBody1New) ;

subclass.addMethod(m1new) ;

we can get the subclass B that has the method1 and the
method2. However the body of the method2 of the sub-
class B is MethodBody1New, while that of the class A is
MethodBody1. This results from the sematic rule of in-
heritance and overloading of methods between a superclass
and its subclasses. Note that the operator � stands for the
concatenation of string data. For example, the expression
’fooMethod’ + fooMethodBody results in ’foomethod(int
A) � return A �’ where the string ’(int A) � return A �’ is
assigned to the variable fooMethodBody.

3.4. Modeling Evolution

The way how to evolve patterns, i.e. the function ����

in Figure1, is also specific to a pattern, and can be specified

as a series of manipulation operations on a pattern structure
(class or object diagram) in the similar way to the definition
of instantiation operations. Pattern evolution causes not
only the change of a pattern structure but also the change of
instantiation operations (����� � ����������� in Figure
1). Therefore adding methods and/or modifying codes in
the methods in a pattern class is also necessary for a pattern
evolution.

Figure 6. Pattern Evolution

Figure 6 illustrates these two changes of a pattern struc-
ture and of the methods as instantiation operations. Thus
we can define a pattern evolution as

Pattern Evolution = Evolution of a Pattern Struc-
ture + Evolution of Instantiation Operations.

In the example of Figure 5, we have the following
changes; 1) change of a pattern structure : the class Cre-
ator that generates Accountability instances is connected
to Accountability class, and 2) change of an instantiation
operation Instantiate Accountability : the Party classes par-
ticipating in generated Accountability instances are added
and the method for associating the accountability with the
parties is added. In this case, since the analysis pattern can
appear in a design pattern as it is, we can get the design
pattern by inheriting the analysis pattern. In this example,
we capture an inheritance relationship as an evolution re-
lationship. That is to say, a pattern class is evolved into
pattern that is its subclass.

Party-Accountability_DesignPattern
extends Party-Accountability_AnalysisPattern{

Party-Accountability_DesignPattern(){

super();

/* Connecting Creator to Accountability Class */
creator = createClass(’Creator’) ;
Accountability.addAggregation(creator) ;

/* Add an abstract method CreatorAccountability
(Interface only) */

m = CreateMethod(
’createAccountability(Party p1,

Party p2) { }’) ;
Creator.addMethod(m) ;

}

/* Making up Relationship the relationship
between Participant#1 and Participant#2 */

Instantiate_Accountability(relationship,
participant#1,
participant#2){

super.Instantiate_Accountability(relationship,
participant#1,
participant#2);

/* Connecting ConcreteCreator as a subclass */
concreteCreator =

CreateClass(’Creator’ + relationship);
Creator.addSubclass(concreteCreator);

m = createMethod(’addLink(Party p1){
...
}’)

Accountability.addMethod(m)

/* Adding a method to Creator
This new method is to associate Relationship
with Participants#1 and Participant#2 */

m = createMethod(’createAccountability(’
+ participant#1 + ’ p1,’
+ participant#2 + ’ p2) {

rel = new Accountability() ;
rel.addAccountabilityType(relationship);
rel.addLink(p1) ;
rel.addLink(p2) ;
}’

) ;
ConcreteCreator.addMethod(m)

}
}

The Party-Accountability DesignPattern class has
the constructor Party-Accountability DesignPattern() and
it calls the constructor of its superclass Party-
Accountability AnalysisPattern at first. After creating an
instance of Party-Accountability AnalysisPattern, the class
�Creator� is generated and embedded into the instance of
the pattern. This operator is the result of evolving the
constructor of the analysis pattern in the design pattern, and
it is one of the evolution directions or strategies. If we have
a different evolution direction, we should define another
evolution operation corresponding to this direction.

The class Accountability, which is one of the ele-
ments of the pattern, has the method �addAccountabili-
tyType(Relationship)�, and the method is used for relating

Relationship (Accountability Type, i.e. the name of ac-
countability) to the Accountability instance. By using this
method, we can set the name of Accountability �supervise�
to the generated Accountability instance. The method ad-
dLink is used for making a link between two instances.
If we execute �rel.addLink(p1)� (strictly saying, send a
message addLink(p1) to the object rel) and rel.add(p2), we
establish the two links of Accountability instances to Party
instances p1 and p2 respectively. When we operate the
instantiation Instantiate Accountability(’supervise’ Profes-
sor, Student) on the Party-Accountability AnalysisPattern,
the method CreateAccountability(Professor p1, Student p2),
where p1 and p2 are a Professor instance and a Student in-
stance respectively, is automatically installed to the concrete
class CreatorSupervise. The concrete class CreatorSuper-
vise is created at the invocation of CreatorClass(’Creator’�
relationship) where the variable relationship has the value
’Supervise’. is assigned

3.5. Meta Model of Patterns

Figure 7 shows the entities and their relationships that a
software pattern consists of. It is represented in a form of
class diagram and called a meta model of software patterns.
It is considered as a schema of object base with which a
pattern catalog or library in a support tool for pattern based
software development.

In the figure the Role class expresses what roles the
classes and the objects appearing in a pattern play.

4. Combining Patterns and Their Evolution

The example that we have used until this section was
a very simple pattern and was used just for explaining
our modeling technique. In actual development processes,
much larger and more complicated patterns are used because
the size of the software systems to be practically developed
are large. We frequently combine many patterns into a
larger pattern or application frameworks[7, 9, 10] (simply
framework) are applied according to problem domains.
A framework can be considered as a kind of patterns, a
coarse-grained or large size pattern specialized in a certain
problem domain. To specify a large-size pattern or a
framework comprehensively, we hierarchically decompose
it into a set of finer grained patterns and it is defined
by using the definitions of the patterns in the lower level
of the hierarchy. More precisely, the pattern structure,
the instantiation operations and the evolution operations
are specified by using those of the lower level patterns.
Figure 8 shows this hierarchical decomposition technique
to specify large and complicated patterns. The bottom level
of the hierarchical structure has operations to operate on
each element of a class and an object diagram, such as

Figure 7. Meta Model of Software Patterns

adding a subclass, adding a method and so on, which were
listed up in the subsection 3.3. We can collect fine-grained
patterns reusable for constructing coarse-grained patterns.

Bottom

Middle

Top

Pattern

Class

command

state

command-state
Lage-size Pattern

Figure 8. Hierarchical Structure on Patterns

Consider a simple example pattern that consists of Com-
mand pattern and State pattern of G-O-F design patterns.
This pattern is often used to design interactive editors. As-
sume that we instantiate a new command that manipulates
edited objects, such as text and model its implementation by
using a state transition machine. Since the state transition
machine is designed based on State Pattern, The effect of
instantiating the new command on the Command Pattern

should be propagated to the State Pattern. Thus an in-
stantiation operation of the pattern invokes the instantiation
operation of Command pattern and then performs the oper-
ation of State patterns. How to combine the two invoked
operations depends on the relationship between the two
patterns – Command and State. We can specify the instan-
tiation operation of the higher level pattern as sequential
invocations as follows;

Command-State_Pattern
extends Command_Pattern and State_Pattern{

....
/* Definition of Pattern Structure */

Command-State_Pattern(){
...
command-pattern = new Command_Pattern() ;
...
state-pattern = new State_Pattern() ;
...

}

Instantiate_Command(Command){
...
command-pattern.Instantiate_NewCommand(

Command.name) ;
....
state-pattern.Instantiate_NewState(state) ;
....

}
}

The operations Instantiate NewCommand and Instanti-
ate NewState are the instantiation operations on Command
and State patterns respectively. Since the Command-

State Pattern consists of Command and State patterns, it
is defined as a subclass of Command and State. Therefore
we can refer to the pattern structures of Command and State
and use their operations to define Command-State Pattern.

5. Conclusion

In our approach, we considered that a software pattern
consists of a pattern structure (class diagram and object
diagram) and manipulation operations on the pattern struc-
ture. These operations are for pattern instantiation (applying
a pattern to an actual problem) and for pattern evolution
(evolving the artifacts of the previous steps into a new one).
We modeled them with object-oriented technique encapsu-
lating these operations into patterns, and described patterns
with Java-like object-oriented language.

We can pick up the research agenda for future work as
follows.

� Supporting tools of evolution on pattern:
By using the supporting tool, users can select patterns
and combine them into the pattern suitable for their
application domain. They are also supported to in-
stantiate and to adapt the pattern with its instantiation
operations. Furthermore the tool provides the candi-
date of patterns that can be used in the next step. It
is done by applying the evolution operations of the
pattern.

� Consistency check of pattern combination and pattern
evolution:
Whenwe combine several patterns or evolve the pattern
into a new one, we should check if the new pattern has
no inconsistency, in particular behavioral aspects. For
example, the behavioral property of the new pattern
should be satisfied with the old pattern when we evolve
the old pattern into the new one. We will consider how
to provide the formal semantics of pattern behavior by
using a formal method such as � calculus.

� Developing pattern base:
Pattern base is a kind of database system for pat-
terns together with instantiation and evolution oper-
ations and plays an important role on the supporting
tool for pattern based software development. It will
be implemented on an object base system such as
PCTE/OMS[12].

References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture , A System
of Patterns. John wiley & Sons, 1996.

[2] G. Florijn, M. Meijers, and P. Winsen. Tool support for
object-oriented patterns. In ECOOP’97 - Object-Oriented
Programming, number 1241 in Lecture Notes in Computer
Science, pages 472–495, 1997.

[3] M. Fowler. Analysis Patterns: Reusable Object Modeling.
Addison Wesley, 1997.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vissides. Design
Pattern: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[5] T. Katayama. A theoretical framework of software evolution.
In Proceeding of IWPSE98, pages 1–5, 1998.

[6] R. Martin, D. Rehle, and F. Buschmann, editors. Pattern
Languages of Program Design 3. Software Patterns Series.
Addison Wesley, 1998.

[7] W. Pree. Design Patterns for Object-Oriented Software
Development. Addison Wesley, 1995.

[8] C. Schmidt, editor. Pattern Languages of Program Design
1. Software Patterns Series. Addison Wesley, 1996.

[9] Taligent Inc. Leveraging object-oriented frameworks. A
Taligent White Paper, 1993.

[10] Taligent Inc. Building object-oriented frameworks. A Tali-
gent White Paper, 1994.

[11] J. Vlissides, J. Coplien, and N. Kerth, editors. Pattern
Languages of Program Design 2. Software Patterns Series.
Addison Wesley, 1996.

[12] L. Wakeman and J. Jowett. PCTE The Standard For Open
Repositories. Prentice Hall, 1993.

